Fault Detection for Vibration Signals on Rolling Bearings Based on the Symplectic Entropy Method
نویسندگان
چکیده
Bearing vibration response studies are crucial for the condition monitoring of bearings and the quality inspection of rotating machinery systems. However, it is still very difficult to diagnose bearing faults, especially rolling element faults, due to the complex, high-dimensional and nonlinear characteristics of vibration signals as well as the strong background noise. A novel nonlinear analysis method—the symplectic entropy (SymEn) measure—is proposed to analyze the measured signals for fault monitoring of rolling bearings. The core technique of the SymEn approach is the entropy analysis based on the symplectic principal components. The dynamical characteristics of the rolling bearing data are analyzed using the SymEn method. Unlike other techniques consisting of high-dimensional features in the time-domain, frequency-domain and the empirical mode decomposition (EMD)/wavelet-domain, the SymEn approach constructs low-dimensional (i.e., two-dimensional) features based on the SymEn estimate. The vibration signals from our experiments and the Case Western Reserve University Bearing Data Center are applied to verify the effectiveness of the proposed method. Meanwhile, it is found that faulty bearings have a great influence on the other normal bearings. To sum up, the results indicate that the proposed method can be used to detect rolling bearing faults.
منابع مشابه
Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملA Refined Composite Multivariate Multiscale Fuzzy Entropy and Laplacian Score-Based Fault Diagnosis Method for Rolling Bearings
The vibration signals of rolling bearings are often nonlinear and non-stationary. Multiscale entropy (MSE) has been widely applied to measure the complexity of nonlinear mechanical vibration signals, however, at present only the single channel vibration signals are used for fault diagnosis by many scholars. In this paper multiscale entropy in multivariate framework, i.e., multivariate multiscal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017